1. Aleotti, P., Chowdhury, R., 1999, Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ, No. 58, pp. 21–44. 2. Ahmadabadi A., Rahmati M., 2015, Application of geomorphometric quantitive parameters in detection of landslide Using SVM model (Case Study: hillway of Khoramabad), Researchers of quantitive geomorphology, No. 3, pp. 197213. 3. Alimohamadi S., Pashay yavel A., Shatayi goybari SH., Parsayi L., 2009, Assessment of Zonation models of landslide hazard in ramian watershed, Researchers of water and soil protection, No. 1, pp. 5978. 4. Ayalew, L., Yamagishi, H., 2005, The application of GISbased logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology, Vol. 65, pp.15–31. 5. Barredo, J.E.I., Benavides, A., Herv, A.S.J., van Westen, C.J., 2000, Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int. J. Appl. Earth Obs. Geoinf, pp. 9–23. 6. Erener, A., Düzgün, H.S.B., 2010, Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway) Landslides. 7, pp. 55–68. 7. Fotheringham, A., Brunsdon, C., Charlton, M., 2002, Geographically weighted regression the analysis of spatially varying relationships University of Newcastle, England: Wiley. 8. Fotheringham, A.S., Charlton, M., Brunsdon, C., 1997, Recent Developments in Spatial Analysis. Springer; Berlin, Germany, Measuring spatial variations in relationships with geographically weighted regression, pp. 60–82. 9. Guzzetti, F., Carrara, A., Cardinalli, M., Reichenbach, P., 1999, Landslide hazard evaluation: a review of current techniques and their application in amulticase study, central Italy. Geomorphology, No. 31, pp.181–216. 10. Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2006, Artificial neural networks and cluster analysis in landslide susceptibility zonation, Geomorphology,No. 94, pp. 379–400. doi: 10.1016/j.geomorph.2006.10.035. 11. Marjanović, M., Kovačević, M., Bajat, B., Voženílek, V., Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol, No. 123, pp. 225–234. doi: 10.1016/j.enggeo.2011.09.006. 12. Ohlmacher, G.C., Davis, J.C., 2003, Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng. Geol, No. 69, pp. 331–343. doi: 10.1016/S00137952(03)000693. 13. Ozdemir, A., Altural, T., 2013, A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci, No. 64, pp.180–197. 14. Yalcin, A., Reis, S., Aydinoglu, A. C., Yomralioglu. T., 2011, A GISbased comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. J. Catena, 85, pp. 274287. 15. Zhang, L., Bi, H., Cheng, P., Davis, C.J., 2004, Modeling spatial variation in tree diameter–height relationships. For. Ecol. Manag, No. 189, pp. 317–329. doi: 10.1016/j.foreco.2003.09.004.
