Determination of the Best Model to Estimate Suspended Sediment Load in Yalfan River, Ekbatan Dam, Hamadan Province

Document Type : Original Article

Authors

1 Faculty of Department of Natural Resources and Environment- Department of Range and Watershed, Malayer University

2 Assistant Professor, Faculty of Natural and Environmental Sciences, Malayer University

10.22034/gmpj.2020.122214

Abstract

Abstract
Mathematical models are one of the important tools for predicting sediment yield in rivers and reservoirs. The purpose of this study was to investigate sediment transport and bed profile changes along the longitudinal and transverse directions in the Yelfan River Ekbatan dam using GSTARS 1.2 model. The studies show that the amount of erosion in the upstream sections is increased compared to the downstream sections and is almost in line with the results of the model in cross section analysis. The model estimated the volume of the sediment to be 1.36 million cubic meters and its proximity to the measured value of 1.42 million cubic meters showed that the Young's equation in the Gstars model presented 1.2 acceptable results.
Introduction
Rivers are affected by various factors such as geological, hydrological, geomorphological, morphological characteristics and how they are exploited. Which are plotted as erosion or sedimentation in the bed, and changes in river form.Therefore, it is necessary to ensure that they work before designing and implementing engineering projects on rivers. At present, the application of suitable mathematical models such as the GSTARS model for the hydraulic investigation of flood currents has been considered.Because it can have significant correlation between geometrical and hydraulic variables of the river, GSTARS model has a good ability to study the morphology of the river. Zahiri et al. (1977), in calculating the transverse distribution of sediment rivers using GSTARS 2.1 quasi-two dimensional mathematical model on Ghare Soo river, concluded that the performance of 2D model is appropriate in estimating transverse distribution of flow velocity and Young's relation in simulation The deposition is most accurate. Hu et al. (2010) simulated the distribution of suspended sediment concentration by quasi-two-dimensional models, using the diffusion equation across the river. The results show that using laboratory conditions and comparing them with computational data can help solve relevant equations to simulate sedimentation and estimate more accurately.
The study area
The Ekbatan Dam watershed is located in the southeast of Hamedan city and is one of the sub-catchments of the Ghareh Chai River located southwest of Mount Alvand. The river regime is permanently snowy-rainy and cold under semi-humid climate.
Materials and Methods
In this study, GSTARS 1.2 model and Young and Tuffalite sediment transport equation were used to investigate sediment transport and bed profile changes along the longitudinal and transverse directions in the 12 km interval of the Ekbatan Dam Yelfan River. First, the bed aggregation data for 9 cross-sections were randomly selected. Then the sediment data of the sections and other inputs of the model were prepared in three sections: geometric, hydraulic and sedimentary and entered into GSTARS 2.1 mathematical model. In the modeling section, the data required for model calibration and calibration were introduced to the model.
Discussion and Results
Surveys show that river water level slightly increased from the beginning of the interval (8-12 km downstream) to the middle of the study area and decreased downstream (4 km up to the end of the interval near the dam body) so It can be seen that the Yang model accurately simulates this process.
Examination of the longitudinal profile of velocity and slope calculated by the model and examination of velocity and slope variations during the study period show that the volume model is estimated to be 1.36 million cubic meters and its proximity to the measured value is 1.42 million. The cubic meter showed that the Young's equation was well able to simulate the volume of sediment transported during these statistical years. It also increased with increasing intercept of sediment yield, but since the slope and velocity are both lower in the middle of the range than the beginning of the region and more than the bottom, Therefore, the sedimentation rate in the middle is higher than the beginning and lower in the study area.
Conclusion
The model simulation results show that in section 4, the amount of erosion in the bed increased compared to the previous section and sedimentation occurred on the banks of the river and erosion was the dominant sedimentation rate. However, in the downstream and near sections of the dam body, the flow velocity and slope interval decreased and the erosion rate decreased. And increased sedimentation rate, indicating a good agreement of Young's (1984) model with the values obtained and the early stages of the study period. In addition, the results of the river crossing study in the model indicate an increased sedimentation rate downstream of the study area and a high erosion rate in the upstream river bed. Therefore, it is suggested to evaluate and execute the results using other models such as River intake in order to provide more reliable and efficient results from the implementation of quasi-2D models.

Keywords


اسماعیلی­، رضا­؛ دلیری­، راحیل­، 1398­، تحلیل‌ مورفولوژیکی و مورفودینامیکی مئاندرهای رودخانه شلمان‌رود، استان گیلان، نشریه پژوهش های دانش زمین­، سال­10­، شماره 39، صص.141-153.
اسفندیاری­، فریبا؛  رحیمی­، مسعود؛ رحیمی­، محسن، 1396­، تحلیل میزان مهاجرت عرضی مجرای رودخانه ارس با استفاده از روش ترانسکت در طی سال‌های 2016-1987 (از سد خدا آفرین تا سد میل مغان)، نشریه پژوهش­های ژئومورفولوژی کمی، دوره 5، شماره 4، صص. 41-58.
ایلدرمی، علیرضا؛ شیخی پور، آزاده، 1395، بررسی تغییرات مورفولوژیکی رودخانه و نقش آن در فرسایش و رسوبگذاری با استفاده از مدل HEC–RAS (مطالعه موردی: رودخانه خرم آباد–دوآب ویسان)، پژوهش­های ژئومورفولوژی کمی، جلد 5، شماره 3، صص. 146- 163.
بایزیدی، مطلب؛ کرمی، نادر، 1396،  پیش بینی روند رسوبگذاری در رودخانه قره سو با استفاده از مدل GSTARS 3، مجله محیط­ زیست و مهندسی آب. دوره 3، شماره 1، صص. 66-80.
خیری زاده آروق، منصور؛ رضایی مقده، محمد حسین؛ رجبی، معصومه؛ دانشفر، رسول­، 1396، تحلیل تغییرات جانبی مجرای رودخانه زرینه­رود با استفاده از روش­های ژئومورفومتریکی، ­نشریه پژوهش­های ژئومورفولوژی کمی، جلد5 ، شماره 4، صص. 76 - ­102.
شایان­، سیاوش؛ شریفی­کیا­، محمد­؛ ناصری، ناهید، 1396، ­تحلیل عوامل مورفولوژیکی در تغییرات الگوی مکانی، فضایی رودخانه الوند، تحقیقات جغرافیایی، دوره ۳۲، شماره ۱، صص. ۲۴-۳۶.
شرفی­، سیامک؛ ­سکوند­، حبیب؛­ کمالی، زهرا، 1398­، بررسی تغییرات مکانی- زمانی مورفولوژی رودخانه سیلاخور در استان لرستان، نشریه پژوهش­های ژئومورفولوژی­کمی، دوره 8، شماره 3­، صص. 115-131.
صلحی، سینا؛ سیف، عبداله، 1397، مورفومتری پروفیل طولی دره­های سهند، ­نشریه پژوهش­های ژئومورفولوژی کمی، سال6 ،  شماره4 ، صص. 53-69. 
ظهیری­، عبدالرضا؛ قلی نژاد­، جواد؛ دهقانی، امی احمد­، 1397­، محاسبه توزیع عرضی رسوب رودها با استفاده از مدل ریاضی شبه دوبعدی (­مطالعه نمونه­ای : رود قره سو­)­، مجله مهندسی منابع آب، سال 11، شماره38، صص.83-93.
کهربائیان، پروین؛ بهنیافر، ا.بوالفضل؛ شاکری زارع، حجت؛ رضایی عارفی، محسن­، 1397،­ تحولات مورفولوژیکی و الگوی پیچان‌رودی بستر رودخانه مرزی هریرود با استفاده از RS، پژوهش‌های ژئومورفولوژی­کمی، دوره 3، شماره 3، صص. 53-64.
Chih Ted, Y., 2008. GSTARS Computer models and sedimentation control in surface water systems. International Conference on Water Resources and Arid Environments, King Saud University.
Hu,  C. Ju,  Z.  and    Guo,  Q.,  2010.  Flow movement   and   sediment  transport  in compound  channels.  Journal   of  Hydraulic  Research, IAHR, 48(1), pp. 23-32
Hu, B. Wang, TH. Yang, Z. and Sun, X., 2011.Temporal and  Spatial variations  of sediment    rating  curves  in  the ­Changjiang­)yangtze River­) basin and their implications. Quaternary International, 230,pp. 34-43.
Iqbal, M., Ghumman, A. R., Haider, S., Hashmi, H. N., and Khan, M. A., 2019. Application of Godunov type 2D model for simulating sediment flushing in a reservoir. Arabian Journal for Science and Engineering, 44(5),pp. 4289-4307
Lai, Y. G., and Wu, K. (2019). A Three-Dimensional Flow and Sediment Transport Model for Free-Surface Open Channel Flows on Unstructured Flexible Meshes. Fluids, 4(1),pp. 18-28.
Li, Z., Yu, G., Brierley, G.J., Wang, Z. and Jia, Y., 2017. Migration and cutoff of meanders in the hyperarid environment of the middle Tarim River, northwestern China, Geomorphology, 276, pp. 116-124.
.Molinas, A. and Yang, C.T., 1986. Computer Program User’s Manual for GSTARS (Generalized Stream Tube model for Alluvial River Simulation), U. S. Bureau of Reclamation, Denver, Colorado.
.Molinas, A. and Wu, B., 2001. Transport of sediment in large sand-bed rivers. Journal of Hydraulic Research, 39(2), pp135-146.
Morais, E.S., Rocha, P.C. and Hooke, J., 2016. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil, Geomorphology, 273, pp. 348-360.
Ouda, M., 2019. Multiphase Modelling of Sediment Transport and Bed Erosion for the Study of Coastal Morphodynamics. (KU Leuven, Technology Campus Brugge, Belgium) October 2019.
Schuurman, F., Shimizu, Y., Iwasaki, T. and Kleinhans, M.G., 2016. Dynamic meandering in response to upstream perturbations and floodplain formation, Geomorphology, 253, pp. 94-109.
Shi, Z.H., Fang, N.F., Wu, F.Z., Wang, L., Yue, B.J.,  and Wu, G. L., 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 123(130), pp. 2747-2760.
Rodriguez-Belanco, M.L. Taboada-Castro, M.M. Palleiro, L. and Taboada-Castro, M.T., 2010. Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology, 123(1-2),pp. 181-188.
Yang, C.T., 2008. GSTARS Computer models and sedimentation control in surface water systems. International Conference on Water Resources and Arid Environments, King Saud University.
Yang, C.T., and Simões, F.J.M., 2000. User’s manual for GSTARS 2.1, U.S. Bureau of Reclamation technical service center, Denver, Colorado.
Zhou, M., Xia, J., Lu, J., Deng, S. and Lin, F., 2017. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities, Geomorphology, 285, pp. 325-332.