تحلیل زئومورفوفیژی رده-آرایه‌ای ریز شبکه آبراه‌های بیدم آمده در بستر خشکشده دریاچه ارومیه

چکیده
کاهش تراز اب دریاچه ارومیه در سال‌های اخیر سبب شده که اراضی بخش‌هایی از بستر آب خشکشده و فراگیری زئومورفوفیژی به دو روش بسته بوده و ریز آب اتاق‌های بستر خشکشده دریاچه ارومیه از طریق تحلیل رده‌آرایه‌های استفاده شده است. به این منظور داداهای گوناگون شبکه آبراه‌های بیدم آمده از نرم‌افزار MapViewer در محیط نرم‌افزار Curvexpert و نرم‌افزار Grapher نیز در تعداد آبراه‌های رده ۱ تا ۶ در نرم‌افزار MapViewer و ترمیم گردید. با توجه به نتایج میان فرآیندهای رده و تعداد آبراه‌های رده‌ای ۱ تا ۶ همبستگی منفی بین تراز و ضریب تغییر میان این دو متغیر در نمای راست شده. پژوهش برای ۱۹۸۷/۰۹۹۶ یک نمای با توجه به پیشرفت پایه همبستگی و تغییرات رده و تعداد آبراه‌های رده‌ای از نمای راست، روند تکامل چرخه توزیعی این برنامه رشد آب‌های رده‌ای رشد چپ است. همبستگی میان رده و میانگین درازای آبراه‌ها هر دو رشد از نمای همبستگی. مربع است و ضریب تغییر میان رده و میانگین درازای آبراه‌ها در دو نمای تغییری برای پژوهش و حدود ۹۸٪ می‌باشد. نمای چپ میانگین درازای آبراه‌ها در این راه نمای درون چپ رشد افزایشی کاهش شد. چپ شدیدتر از نمای راست می‌باشد.

واژگان کلیدی: شبکه آبراهه، دریاچه ارومیه، تکامل، رده‌آرایه‌ای، زئومورفوفیژی جریانی.

E-mail: Elmizadeh@kmsu.ac.ir

نویسنده منویل:
مقدمه

شیبکه آبراهه‌ها نمودی بارز ریخت‌زایی فراترده‌های آبی در روی زمین هستند. به‌طورکلی، تعیین‌کننده‌ی جبرانی در طی‌بی‌ت‌گی‌های درختی دارند. در زمینه‌ی جراین خون یا انرژی الکتریکی (شیبکه‌ی اتصال) نسبت به حالت‌های مختلف که در آن شیبکه‌های آبراهه‌های درختی هستند. در صورت این شیبکه‌های آبراهه‌ها، در روند منطقه‌های زمین فرمی، شبیه و طرح، افت و افتخارات به داده‌های میزان دبی و روابط هماهنگی است. هر گونه تغییری در این داده‌ها بدون آن سیستم هم‌اکنون‌کننده‌ی دیگر ویژگی‌های مورفولوژیکی خود با پیچیده و باعث نشان می‌دهد؛ این نوع فراورده را می‌توان در اثر تغییرات منظر محوطه‌های دومورفیکی در نظر گرفت که در آن تغییر و تحول در کمترین فاصله زمانی روی می‌دهد. اگر تغییراتی به دست آوردی، این نتایج را به‌صورت پیچیده‌ای در جراین دارد. در یک مجموعه پیداپژاسی از واکنش‌های متقابل‌های شیبکه‌های جغرافیایی است. در این مجموعه، پیداپژاسی شیبکه‌های جغرافیایی است. در این مجموعه، پیداپژاسی شیبکه‌های جغرافیایی است. شیبکه‌های جغرافیایی در دیدگاه‌های جغرافیایی است. مهم‌ترین تغییرات در سبک در حال تغییر در نمای هدایت ولتی و مقطع غربی همواری‌های جابجایی در سبک جراین رودخانه‌ها ایجاد می‌کند و با تشکیل فرسایش و رسوب‌گذاری نیز همراه می‌گردند (شور و ولکامب، 2003). یکی از ترتیب‌های پیشنهادی این شیبکه‌های تغییری شامل جغرافیایی است. در این موارد در مناطق کوه‌بند مانند آبراهه‌های پیش‌بند در سیستم خشک‌نشده رودخانه‌ها دیده‌اند. این موارد در مناطق کوه‌بند مانند آبراهه‌های پیش‌بند در سیستم خشک‌نشده رودخانه‌ها دیده‌اند. این موارد در مناطق کوه‌بند مانند آبراهه‌های پیش‌بند در سیستم خشک‌نشده رودخانه‌ها دیده‌اند. این موارد در مناطق کوه‌بند مانند آبراهه‌های پیش‌بند در سیستم خشک‌نشده رودخانه‌ها دیده‌اند. این موارد در مناطق کوه‌بند مانند آبراهه‌های پیش‌بند در سیستم خشک‌نشده رودخانه‌ها دیده‌اند. این موارد در مناطق کوه‌بند مانند آبراهه‌های پیش‌بند در سیستم خشک‌نشده رودخانه‌ها دیده‌اند.

Thorndycraft.
*Scott & Mason.
* Schoorl & Veldkamp.
شده است. بنابراین به‌طور کلی، این مطالعه این نتایج را به‌دست می‌آورد تا بتواند در حالت‌های مختلفی از جمله مواردی که به‌طور کلی در رشته‌های مختلف علمی به‌طور کلی، و نه به‌طور کوچکی، به‌طور کلی، و نه به‌طور
پژوهش‌های زونومورفولوژی کنی، سال تیز، شماره ۴، پارس ۱۳۹۷

۱۰۰

قرار دادن و ترانزیت ۱ همکاران (۱۳۹۴) از سنگش از دور و GIS
برای تشخیص بندبندی‌های تغییرات خط ساحلی و آب‌راه‌ها
در میکروکاوان‌ها و برنامه‌ریزی مطالعاتی انجام دادن.

از کارهای انجام شده در ایران می‌توان به بررسی تغییرات بستر کانال‌های آب‌ریز در قزوین ۱۸۰ جهه
(دهقانی و همکاران ۱۳۸۸) اشاره نمود. همچنین دریž و همکاران (۱۳۹۱) به بررسی تغییرات طولی
رودخانه‌ی کارون با استفاده از رویا مسایل مهندسی، روند خشکی و خاک در بستر، تغییرات روند و
کارون از نظر طولی و مکانی می‌باشد. در این روند از آن‌جایی که افزایش خاک‌سازی بوده و امکان
تغییرات با کاهش خط ساحلی قاعده‌ای را به روش تحلیل تغییر‌های متساوی‌البعد برداخته. نتایج
این پژوهش نشان می‌دهد که تغییر در بستر الگوی سطحی و سعی می‌شود با انجام عملیات شناسی،
بیشترین تأخیر را در تغییر سریع خط ساحلی قاعده‌ای دلتا داشته است. پژوهش (۱۳۹۱) بر ارزیابی اثرات
منطقه‌ای در مختلف سامان‌های رودخانه‌ی کارون بر مشخصات هیدرولیکی جریان نشان داد که در سال‌های
آخری به‌منظور سامان‌هایی رودخانه‌ی کارون، عملیات با نیروی بزرگی از زیرآب رودخانه جریان‌های
شهر اهواز، تبادل سازان آب و برق درون‌مانند انجام‌شده است که عمل حصول تغییرات مطلوب در این طرح، ضرورت
نیازمندی استانداردهی مختلف سامان‌های رودخانه‌ی کارون را دارد. عاشوری و همکاران (۱۳۹۲) تغییرات
منطقه‌ای در بستر رودخانه‌ی کنی قبل و بعد از احداث سد سفیدروود با انجام عملیات شناسی،
کاهش میزان رسوب بستر زمین را از نظر سطحی و یا تقریبی است. راهبرد کلی و قراری (۱۳۹۳) به بررسی انواع روش‌های حفاظت از سواحل رودخانه‌های
درون‌شهری و انواع موثرتران رودخانه‌ها برداخته‌ند. دریژ (۱۳۹۴) به تحلیل شکل مجار در
موج‌های اثری رودخانه‌های مهاردها برداخت و به این ترتیب رسم ریزی که مواد درشت دانه موجود در
کانال‌ها همراه با افزایش نسبتا به هما عمق سیب‌کلک گیسی‌های گیسی را باعث می‌شود. به طرفی، پایین دستی از
محدوده گیسی‌رو بستر رودخانه با شکل سنتو تغییر پیدا می‌کند.

محدوده مورد مطالعه
دریاچه ارومیه به چهارگوشی به مختصات ۴۴° درجه ۵۹ دقیقه تا ۴۲ درجه ۵ دقیقه طول شرقی و
۷۳ درجه ۲ دقیقه تا ۲۸ درجه ۸ دقیقه عرض شمالی بین دو استان آذربایجان شرقی و غربی وعده است. کاهش تراز آب دریاچه ارومیه به سال‌های آخر سیب شده که این پهنه بسیار مورد توجه پژوهشگران
رشته‌های گوناگون قرار گرفت. این دریاچه در گذشته با تراز آب ۱۳۷۲ متر با سرتهای پراپر ۵۳۰۰ کیلومتر مربع در رده بستم دریاچه‌های زمین بوده (رژیم و عباسیان، ۱۳۸۸ و ۱۳۷۹) وابستگی آن در سال
پس از ۱۹۸۹ به ۵۴۹۰ کیلومتر مربع کاهش یافته‌در و در ۱۳۸۹ به حدود ۱۵ کیلومتر بسیار ۹۸ بوده و سپس ۲۸ کیلومتر مربع
رسیده است (میلانی و همکاران، ۱۳۹۴). کاهش تراز آب دریاچه ارومیه به سال‌های آخر سیب شده که از
بخش‌های بزرگی از بستر آن خشکشده و فراورده‌های زیست‌محیطی جهیز در خشک‌شدن به‌ویژه فاصله‌های
رودخانه‌ی به درون بستر آن گسترش یافته به وسیله بسته بشر در این مقاله بخش‌های کوچکی از گستره شمال شرقی
بستر دریاچه ارومیه است. وسعت این بخش حدود ۵/۰ کیلومتر مربع (مشکل ۱)।

۱ Tran Thi
۲ Mui Ca Mau
مقدمه
زیست ساخت برداشت داده‌ها در این پژوهش تصاویر ماهواره‌ای سال 2015 موجود در محیط نرم‌افزار Google Earth و Global Mapper و شرکت‌های Google و DigitalGlobe فرمات برداشت شده است. این مقاله در نرم‌افزار گیت پروفیتی ساخته شده و پژوهش حوضه‌ای شکل گرفته است. برای تحلیل روابط چرخه در شبکه آب‌ریزی‌های محدوده‌های موجود در مطالعه از نرم‌افزارهای شرکت‌های Google Earth و Global Mapper استفاده شده است. تحلیل ردی-آرایه‌ای استفاده شده است. تحلیل ردی-آرایه‌ای بک روشن نیز در مطالعه شکل آب‌ریزی‌ها است. عباسی، ۱۳۸۶، در این روش تخمین شکل آب‌ریزی‌های حوضه‌ها بر اساس مدل استرال رابیندی شده و سپس شبکه آب‌ریزی‌ها به سه بخش راست، مرکز و چپ تقسیم می‌شود (شکل ۲). خط تقسیم حوضه، راستی آب‌ریزی‌های با برای دارای پیژن‌گزارنی رده می‌باشند. در ادامه این آب‌ریزی به خط رأس اصلی بین دو بخش راست و چپ حوضه بیوزره و حوضه را به دو نوع تقسیم می‌کند.

در نمونه ارائه شده روی شکل ۲ حوضه از روی رستاخیز برای آب‌ریزه و دو به سوی بالای حوضه امتدادی تعریف شده و ادامه آن پس از تمام شدن آب‌ریزه رده ۲ به روزی خط رأس موجود بین دو آب‌ریزه رده ۳ ادامه یافته تا حوضه به دو بخش تقسیم گردد.

شکل ۱: جابجای جغرافیایی پهنه پژوهش

-Strahler
بسیار ترتیب می‌تواند رده‌ای یک رابطه به ماتریس تدوین کند. روی قطر این آبی تعداد رده‌های اصلی (1 به 1.1 به 1.2 به 2 به 2.3 به 3.4) شمارش و نوشته شود و رده‌های فرعی که به رده‌های اصلی پیوسته‌اند نیز شمارش شده و در دو نیمه چپ و راست آرایه نوشته شوند. در این راستا توزیع رده‌های آبترشک در چهارچوب یک آرایه مربع که تعداد سطر و ستون آن برابر با پیوستگی ویژه رده‌های آبترشک است، شمارش و تکرار شوند (جدول 1).

جدول 1: تعداد رده‌های 1 تا 4 شکل 2

<table>
<thead>
<tr>
<th>رده</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>88</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>503</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>3</td>
</tr>
</tbody>
</table>

یافته‌ها

داده‌ها و کاملاً به دست آمده از تصاویر ماهواره‌ای در محیط نرم‌افزار MapViewer فراخوان شده و با بهره‌گیری از روش استرالر آبترشک رده‌بندی شده و نقشه شبکه آبترشک‌های پژوهشی تدوین گردید (گام 3).
با پره‌گیری از نقشه شبکه آبراهمه‌های پژوهش فرآیندهای تبدیل، جمع و میانگین درازای آبراهمه‌ها بر پایه رده آن‌ها به‌دست‌آمدی و در جدول‌های ۳ و ۴ ارائه شده‌اند که در شکل شماره ۳ دیده می‌شود، بالاترین رده آبراهمه‌های پژوهش برای ۶ است.

با توجه به فرآیندهای به‌دست‌آمده (جدول ۲) تعادل آبراهمه‌های رده‌ی یک که به‌هم‌پیوسته و آبراهمه‌های رده دو در بخش‌های پایین می‌آورند، ۳۴ عدد است و تعادل این آبراهمه‌ها در بخش چپ پژوهش برای ۹۸ عدد است. تعادل آبراهمه‌های رده ۱ نیمه راست که به رده‌های ۲ تا ۴ پیوسته‌اند، به ترتیب ۱۵، ۹، ۷۵ و ۱۰ است. این تعادل در نیمه چپ پژوهش نیز به ترتیب ۱۵، ۱۲، ۳۰ و ۰ است. در این مطالعه به‌هم‌پیوسته به رده‌های بالاتر در دو سوی پژوهش نزدیک به هم‌پیوسته و فاصله‌های آبراهمه‌های رده یک پیوسته به رده‌های بالاتر در دو سوی راست و چپ با هم اختلاف داشته و تعادل از این نظر در پژوهش نیز دیده نمی‌شود.

جدول ۲: تعادل رده‌های ۱ تا ۶ آبراهمه‌های راست، مرکز و چپ پژوهش

<table>
<thead>
<tr>
<th>رده</th>
<th>۰</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۴۴۶۴۸</td>
<td>۸</td>
<td>۱۵</td>
<td>۹</td>
<td>۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲</td>
<td>۸۴۲۲۵</td>
<td>۴</td>
<td>۱۵</td>
<td>۹</td>
<td>۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۳</td>
<td>۲۰۴۲۶</td>
<td>۱۰</td>
<td>۱۵</td>
<td>۹</td>
<td>۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۴</td>
<td>۲۰۲۲۲</td>
<td>۲۲</td>
<td>۱۵</td>
<td>۱۰</td>
<td>۴</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۵</td>
<td>۱۰۱۱۰</td>
<td>۵</td>
<td>۲۲</td>
<td>۱۵</td>
<td>۹</td>
<td>۱</td>
<td>۰</td>
</tr>
<tr>
<td>۶</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>
هشتم آبراهیم رده ۱۲ در نیمه راست پیشنه، پژوهش به‌هم‌پیوسته‌اند، ولی در نیمه چپ این تعداد به ۱۲ تن افزایش یافته است. آبراهیم می‌بایست و آبراهیم‌ها رده دو که به رده‌های ۵/۴ و ۶/۴ پیوسته، به ترتیب ۱/۴ و ۱/۴ بوده و این تعداد در نیمه چپ به ترتیب ۰/۵ و ۰/۵ است (جدول ۲). همچنین ۳ آبراهیم با رده ۳ در نیمه راست و ۴ آبراهیم در نیمه چپ به‌هم‌پیوسته‌اند. آبراهیم رده سه که به رده ۴ پیوسته‌اند در نیمه راست ۲ عدد و در نیمه چپ نه تنها یکی است. ولی هیچ آبراهیم رده ۳ به آبراهیم‌های رده ۵ و ۶ در سایر راست و چپ پهنه پژوهش به‌هم‌پیوسته است. در هر کدام از دو نیمه راست و چپ پهنه پژوهش تعداد ۲ آبراهیم رده ۴ به‌هم‌پیوسته و در مجموع دو آبراهیم رده ۵ پیدای اورده‌اند. هیچ آبراهیم رده چهارم در دو سایر این ریز حوزه به رده‌های ۵ و ۶ پیوسته است و تنها دو آبراهیم با ۵ در پهنه پژوهش بدیج آمده و به‌هم‌پیوسته‌اند تنها در نهایت یک آبراهیم رده شش را پیدا کرده است.

جدول ۲: جمع درازای رده‌ها ۱ تا ۶ آبراهیم‌های راست، مرکز و چپ پهنه پژوهش

<table>
<thead>
<tr>
<th>رده</th>
<th>۰/۲۵</th>
<th>۰/۳۳</th>
<th>۰/۴۱</th>
<th>۰/۷۱</th>
<th>۰/۹۱</th>
<th>۱/۱۱</th>
<th>۱/۳۷</th>
<th>۱/۴۷</th>
<th>۱/۷۷</th>
<th>۲/۰۱</th>
<th>۲/۲۷</th>
<th>۳/۴۴</th>
<th>۴/۴۷</th>
<th>۵/۷۷</th>
<th>۶/۰۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>۲/۲۷</td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۲/۳۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td></td>
</tr>
</tbody>
</table>

در این مثال، در نیمه چپ نمودار، تعداد وجود ندارد (جدول ۲). آبراهیم‌های رده دو که به رده‌های ۵/۴ و ۶/۴ پیوسته، به ترتیب ۱/۴ و ۱/۴ بوده و این تعداد در نیمه چپ به ترتیب ۰/۵ و ۰/۵ است (جدول ۲). همچنین ۳ آبراهیم با رده ۳ در نیمه راست و ۴ آبراهیم در نیمه چپ به‌هم‌پیوسته‌اند. آبراهیم رده سه که به رده ۴ پیوسته‌اند در نیمه راست ۲ عدد و در نیمه چپ نه تنها یکی است. ولی هیچ آبراهیم رده ۳ به آبراهیم‌های رده ۵ و ۶ در سایر راست و چپ پهنه پژوهش به‌هم‌پیوسته است. در هر کدام از دو نیمه راست و چپ پهنه پژوهش تعداد ۲ آبراهیم رده ۴ به‌هم‌پیوسته و در مجموع دو آبراهیم رده ۵ پیدای اورده‌اند. هیچ آبراهیم رده چهارم در دو سایر این ریز حوزه به رده‌های ۵ و ۶ پیوسته است و تنها دو آبراهیم با ۵ در پهنه پژوهش بدیج آمده و به‌هم‌پیوسته‌اند تنها در نهایت یک آبراهیم رده شش را پیدا کرده است.
میانگین درازای آباهه‌های رده یک که به‌هم‌پیوسته‌اند، در دو نیمه راست و چپ به‌هم‌پیوسته شده‌اند. میانگین درازای ۶۵ و ۵۷ متر است. در نیمه راست آباهه‌های رده ۲ که به‌هم‌پیوسته‌اند، از ۲۷ تا ۵۱ متر، رابرت برای این ارقام در رده‌های ۱ و ۴، این ارقام برای آباهه‌ها، به‌هم‌پیوسته، در نیمه راست و چپ به‌هم‌پیوسته‌اند، برای ۸۰ و ۱۱۲ متر است. این ارقام برای آباهه‌ها، در نیمه راست و چپ به‌هم‌پیوسته‌اند، برای ۷۰ و ۱۰۰ متر می‌باشد (جدول ۴). میانگین درازای دو آباهه رده چهار که به‌هم‌پیوسته، دو نیمه راست و چپ به‌هم‌پیوسته، دو نیمه R تیوطی گیری

جدول ۱: تعداد، جمع و میانگین درازای رده‌های ۱ تا ۶ آباهه‌های راست، مرکز و چپ به‌هم‌پیوسته

<table>
<thead>
<tr>
<th>رد</th>
<th>تعداد آباهه‌های راست</th>
<th>تعداد درازای آباهه‌های چپ</th>
<th>تعداد درازای آباهه‌های چپ در راسته</th>
<th>میانگین درازای آباهه‌های چپ</th>
<th>میانگین درازای آباهه‌های چپ در راسته</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸۷</td>
<td>۶۹</td>
<td>۶۹</td>
<td>۶۹</td>
<td>۶۹</td>
</tr>
<tr>
<td>۲</td>
<td>۶۱</td>
<td>۵۷</td>
<td>۵۷</td>
<td>۵۷</td>
<td>۵۷</td>
</tr>
<tr>
<td>۳</td>
<td>۵۲</td>
<td>۴۷</td>
<td>۴۷</td>
<td>۴۷</td>
<td>۴۷</td>
</tr>
<tr>
<td>۴</td>
<td>۴۷</td>
<td>۴۲</td>
<td>۴۲</td>
<td>۴۲</td>
<td>۴۲</td>
</tr>
<tr>
<td>۵</td>
<td>۴۲</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>۶</td>
<td>۳۷</td>
<td>۳۲</td>
<td>۳۲</td>
<td>۳۲</td>
<td>۳۲</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

میانگین درازای آباهه‌های رده‌های ۱ تا ۶ به‌هم‌پیوسته، در نیمه راست و چپ به‌هم‌پیوسته شده‌اند. به‌هم‌پیوسته، در نیمه راست و چپ به‌هم‌پیوسته، در نیمه راست و چپ به‌هم‌پیوسته، در نیمه راست و چپ به‌هم‌پیوسته، در نیمه R تیوطی گیری

جدول ۲: تعداد، جمع و میانگین درازای رده‌های ۱ تا ۶ آباهه‌های راست، مرکز و چپ به‌هم‌پیوسته

<table>
<thead>
<tr>
<th>رد</th>
<th>تعداد آباهه‌های راست</th>
<th>تعداد درازای آباهه‌های چپ</th>
<th>تعداد درازای آباهه‌های چپ در راسته</th>
<th>میانگین درازای آباهه‌های چپ</th>
<th>میانگین درازای آباهه‌های چپ در راسته</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸۷</td>
<td>۶۹</td>
<td>۶۹</td>
<td>۶۹</td>
<td>۶۹</td>
</tr>
<tr>
<td>۲</td>
<td>۶۱</td>
<td>۵۷</td>
<td>۵۷</td>
<td>۵۷</td>
<td>۵۷</td>
</tr>
<tr>
<td>۳</td>
<td>۵۲</td>
<td>۴۷</td>
<td>۴۷</td>
<td>۴۷</td>
<td>۴۷</td>
</tr>
<tr>
<td>۴</td>
<td>۴۷</td>
<td>۴۲</td>
<td>۴۲</td>
<td>۴۲</td>
<td>۴۲</td>
</tr>
<tr>
<td>۵</td>
<td>۴۲</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>۶</td>
<td>۳۷</td>
<td>۳۲</td>
<td>۳۲</td>
<td>۳۲</td>
<td>۳۲</td>
</tr>
</tbody>
</table>
رده‌های ۱ تا ۴ همبستگی تمامی یک برقراری بوده و ضریب تبعین ۲ می‌اندازند. طبق نمودار ۱ و در نیمه چپ ۹۷۵/۰، این بیانگر چنین نتایجی است که هرچند همبستگی رده و تعداد آباهای در نیمه چپ به‌طور مشابه با آباهای در نیمه چپ است، ولی با توجه به تغییر درون خود این تعداد دارد. رده و تعداد آباهای در نیمه چپ راه رونده به کامل ریخت شناختی آباهایی تندرت از نیمه چپ است.

نمودار ۱: رابطه رده و تعداد آباهایی به‌طور یک‌تایی همبستگی میان رده و درازای آباهایی به‌طور یک‌تایی همبستگی میان رده و تعداد آباهایی هر دویمی است (نمودار ۲).

۱ - Exponential
۲ - Determination coefficient
نمودار ۲: ارایش رده و درازای ابراهیمهای بهنه پژوهش

همبستگی میان رده و درازای ابراهیمهای بهنه پژوهش به نسبت همانند همبستگی میان رده و تعداد ابراهیمهای در هر دویمیه نمایش می‌دهد. ضریب تغییرات مینه رده و درازای ابراهیمهای نیمه راست برای ۹۷/۰۴۰ است، ولی در نیمه چپ این همبستگی افت آمایه نیمه راست به حدود ۹۱/۰۳۳ کاهش می‌یابد. بر این باه تفاوت آمایه ریخت‌شناسی شکه ابراهیمهای نیمه راست و چپ (شکل ۳) با واگاوی آماری و تحلیل همبستگی قابل بررسی است.

روند تغییرات میانگین درازای ابراهیمهای نیمه راست و چپ شکه ابراهیمهای بهنه پژوهش با روند تغییرات رده، تعداد و درازای ابراهیمهای آن متفاوت است. به‌گونه‌ای که در نیمه راست و چپ میانگین درازای ابراهیمهای از رده ۱ تا ۳ افزایش تصاعدی یافته و سپس از رده ۴ تا رده ۶ این میانگین با شیب تندا کاهش می‌یابد (نمودار ۳).
همیستگی میان رده و میانگین درازای اباره‌های هر دو نمونه از نوع معکوس مربع 3 است. در دونیمه ضریب تعیین میان رده و میانگین درازای اباره‌ها تقریباً برای بوده و حدود 98 است. نتایج میانگین درازای اباره‌ها در این دونیمه درون‌دست افزایش و کاهش میانگین درازای اباره‌ها در نیمه چپ شده‌اند از نیمه راست باشد. به دلیل کشیدگی شکل زنگوله‌ای منحنی برای رده و میانگین درازای اباره‌های نیمه چپ بیشتر از نیمه راست است.

سیاست‌گذاری:

این مقاله مستندی از نتایج طرح تحقیقاتی اجرای شده با شماره قرارداد 114 از محل اعتبارات ویژه پژوهشی دانشگاه علوم و فنون دریایی خرمشهر می‌باشد.

منابع

دهقانی، امیراحمد، قدریان، مصطفی، سعید، صالحی‌نیشابوری، علی‌اکبر و مهدی شفیعی، فر. 1386. بررسی تغییرات بستر کنال‌های اورودخانه در قسمت برخوردار دامنه جغرافیایی تپه جنوبی، جغرافیای جهانی، جلد 14، شماره 1، صفحات 143-156.

روسلو، علی‌اکبر و عباسیان، شیروانی. 1388. تحلیل مقدادی سری‌های زمانی تراز سطح آب دریاچه ارومیه، نشریه جغرافیا و برنامه‌ریزی، شماره 106، صفحات 137-146.

رهبر کلیشی، رقیه و قرانی، فرشا. 1393. بررسی روش‌های حفاظت از رودخانه‌های شهری از منظر توسعه پایدار و مناسبسی سیلاب‌های اصلی، ارزیابی وضعیت شرایط انجام از پژوهش‌های جغرافیایی (مطالعه موردی: منطقه‌های پایین‌دست سد سارخان اهر). پژوهش‌های جغرافیایی طبیعی، دوره 4، شماره 1، صفحات 100-107.

عباسی، علیرضا. 1385. تحلیل رده‌های طبقه‌بندی اباره‌ها در زمین‌ریخت‌شناسی، نخستین همایش جغرافیا و قرن بیست و یکم، انجام شده در آزاد اسلامی واحد تهران جنوب.

مرشدی، جفری، علی‌اکبر، کاظمی و ملیانی، ابراهیم. 1392. بررسی تغییرات طولی رودخانه‌های کارون با استفاده از روش میدانی کهپنکاری جغرافیایی (مطالعه موردی: از شوشتر تا ارومیه). مهیج‌شناسی، دوره 49، شماره 2، صفحات 1-10.

نیروی هادی. 1394. تحلیل مورفولوژیکی مجزا رودخانه مهاباد و تأثیر احتمال سد بر آن، شرایط تحقیقات کاربردی علوم جغرافیایی سال پاژند، شماره 27، صفحات 172-155.

رهاکی. علی‌اکبر، محمدرضا، محمد، جفری بیکلو، منصور و لرستایی، فامیل. 1392. بررسی تغییرات برخوردار خط ساحلی قاعده دلتای سفرسکی و درون طبیعی سفلی، پژوهش‌های جغرافیایی طبیعی، سال 45، شماره 2، صفحات 1-10.

رهاکی. مجتبی، ملیانی، ابراهیم و لرستایی، منصور، صالحی‌نیشابوری، علی‌اکبر. 1394. ارزیابی سطوح دریاچه ارومیه در کویران تری با مطالعه پدیده‌های دریاچه‌ای. پژوهش‌های جغرافیایی طبیعی، دوره 47، شماره 1، صفحات 117-124.

پیشنهاد شیخ‌زاده محمد‌رضا، این مقاله از تجربیات سازنده‌های مختلف ساخته رودخانه‌های منطقه‌های موردی برای استفاده در مطالعات موردی رودخانه‌های کارون بیشتر شده‌است. وزارت علوم، جغرافیا و فناوری - دانشگاه تهران - اجرای قرارداد 3977 می‌باشد.
• Anisimov, Vandenbergh, 2008: Predicting changes in alluvial channel patterns in North-European Russia, Geomorphology(98),pp262–274.
• Gaeuman, D., Schmidt, J.C., Wilcock, P.R.,2005: Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah. Geomorphology 64,pp185–206.
• Longhitano, S, Colella, A, 2007: Geomorphology, sedimentology and recent evolution of the anthropogenically modified Simeto River delta system (eastern Sicily, Italy), Sedimentary Geology, Volume 194, Issues 3-4, 1, PP195-221
• Rüther, N, Olsen. N.R.B, 2007: Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamics,Geomorphology, Volume 89, Issues 3-4, PP 308-319